Nitrate does not result in iron inactivation in the apoplast of sunflower leaves.

نویسندگان

  • Miroslav Nikolic
  • Volker Römheld
چکیده

It has been hypothesized that nitrate (NO(3)(-)) nutrition might induce iron (Fe) deficiency chlorosis by inactivation of Fe in the leaf apoplast (H.U. Kosegarten, B. Hoffmann, K. Mengel [1999] Plant Physiol 121: 1069-1079). To test this hypothesis, sunflower (Helianthus annuus L. cv Farnkasol) plants were grown in nutrient solutions supplied with various nitrogen (N) forms (NO(3)(-), NH(4)(+) and NH(4)NO(3)), with or without pH control by using pH buffers [2-(N-morpholino)ethanesulfonic acid or 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid]. It was shown that high pH in the nutrient solution restricted uptake and shoot translocation of Fe independently of N form and, therefore, induced Fe deficiency chlorosis at low Fe supply [1 micro M ferric ethylenediaminedi(O-hydroxyphenylacetic acid)]. Root NO(3)(-) supply (up to 40 mM) did not affect the relative distribution of Fe between leaf apoplast and symplast at constant low external pH of the root medium. Although perfusion of high pH-buffered solution (7.0) into the leaf apoplast restricted (59)Fe uptake rate as compared with low apoplastic solution pH (5.0 and 6.0, respectively), loading of NO(3)(-) (6 mM) showed no effect on (59)Fe uptake by the symplast of leaf cells. However, high light intensity strongly increased (59)Fe uptake, independently of apoplastic pH or of the presence of NO(3)(-) in the apoplastic solution. Finally, there are no indications in the present study that NO(3)(-) supply to roots results in the postulated inactivation of Fe in the leaf apoplast. It is concluded that NO(3)(-) nutrition results in Fe deficiency chlorosis exclusively by inhibited Fe acquisition by roots due to high pH at the root surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees.

Experiments have been carried out with field-grown pear trees to investigate the effect of iron chlorosis on the composition of the leaf apoplast. Iron deficiency was associated with an increase in the leaf apoplastic pH from the control values of 5.5-5.9 to 6.5-6.6, as judged from direct pH measurements in apoplastic fluid obtained by centrifugation and fluorescence of leaves incubated with 5-...

متن کامل

EDTA-Coated Fe3O4 Nanoparticles: a Novel Biocompatible Fertilizer for Improving Agronomic Traits of Sunflower (Helianthus Annuus)

In this study, a set of experiments were conducted to investigate the influence of EDTA-grafted iron oxide nanoparticles exposure on agronomic traits of sunflower (Helianthus annuus) plants. The experiment was implemented by applying Nano-Fe3O4-EDTA and Fe-EDTA fertilizers applied through spray or soil amendment. A variety of parameters including Aerial organ biomass, Number of leaves, Plant he...

متن کامل

Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals.

The confocal microscope was used to determine the pH of the leaf apoplast and the pH of microvolumes of xylem sap. We quantified variation in leaf apoplast and sap pH in relation to changes in edaphic and atmospheric conditions that impacted on stomatal sensitivity to a root-sourced abscisic acid signal. Several plant species showed significant changes in the pH of both xylem sap and the apopla...

متن کامل

Localization and Study of Histochemical Effects

A high capacity for accumulation of Mn was reported for sunflower plants. Localization of excess Mn is therefore of special interest for understanding metal tolerance mechanisms in this species. In this study, structural and histochemical alterations caused by Mn accumulation in leaves were investigated in sunflower (Helianthus annuus L. cv. Azar-ghol) plants grown in nutrient solution. In the ...

متن کامل

Absorbability and translocation of Nickel from soil using the sunflower plant (Helianthus annuus)

Today, soil pollution with heavy metals is a major environmental concern across the world. Phytoremediation is defined as a technique through which plants are able to absorb contaminants and potently recover the soil that is polluted by heavy metals. The present study aimed to investigate the level of nickel concentration in the roots, stems, and leaves of sunflower, as well as the mobility of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 132 3  شماره 

صفحات  -

تاریخ انتشار 2003